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OUTLINE

Summary of problems with NWP model output

Use of downscaling techniques to compensate for
NWP model shortcomings

Experimental hydrologic forecasts




MRF FORECAST ARCHIVE

0 The NCEP/NCAR reanalysis —

a 40+ year record of global atmospheric fields and surface fluxes

derived from a numerical weather prediction and data assimilation
system kept unchanged over the analysis period

a Every five days, a single realization of

an 8-day forecast was run

for the period 1958-1998, this provides over 2500 8-day forecasts
that can be compared with observations

0 Model output is archived on a regular
lat/lon grid with approx 1.875°
horizontal resolution.
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DOWNSCALING OF THE
NCEP MRF OUTPUT

Use Multiple linear Regression
with forward selection

Predictor Variables (over 300):

— Geo-potential height, wind, and humidity at
five pressure levels

— Various surface flux variables

— Computed variables such as vorticity
advection, stabilitiy indices, etc.

— Variables lagged to account for temporal
phase errors in atmospheric forecasts.
Predictands are maximum and
minimum temperature,
precipitation occurrence, and
precipitation amounts
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DOWNSCALING OF THE
NCEP MRF OUTPUT

Use Multiple linear Regression
with forward selection

Predictor Variables (over 300):

— Geo-potential height, wind, and humidity at
five pressure levels

— Various surface flux variables

— Computed variables such as vorticity
advection, stabilitiy indices, etc.

— Variables lagged to account for temporal
phase errors in atmospheric forecasts.
Predictands are maximum and
minimum temperature,
precipitation occurrence, and
precipitation amounts

Use cross-validation procedures
for variable selection — typically
less than 8 variables are selected
for a given equation

Stochastic modeling of the
residuals in the regression
equation to provide ensemble time
series
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DOWNSCALING OF THE
NCEP MRF OUTPUT

Use Multiple linear Regression
with forward selection

Predictor Variables (over 300):

— Geo-potential height, wind, and humidity at
five pressure levels

— Various surface flux variables

— Computed variables such as vorticity
advection, stabilitiy indices, etc.

— Variables lagged to account for temporal
phase errors in atmospheric forecasts.
Predictands are maximum and
minimum temperature,
precipitation occurrence, and
precipitation amounts

Use cross-validation procedures
for variable selection — typically
less than 8 variables are selected
for a given equation

Stochastic modeling of the
residuals in the regression
equation to provide ensemble time
series
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A separate equation is developed for
each station, each forecast day, and
each month.

» Equations developed over the period
1958-1976, and validated for the period
1977-1998.
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SKILL OF MAXIMUM TEMPERATURE PREDICTIONS
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SKILL OF MINIMUM TEMPERATURE PREDICTIONS
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SKILL OF PRECIPITATION PREDICTIONS
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Hydrologic Model
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Ranked Probability Score

Measure of probabilistic forecast skill
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Methods for experimental forecasts
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Purpose: Downscale global-scale atmospheric forecasts,t
local scales in river basins (e.g., individual stations).



Downscaling approach

Identify outputs from the global-scale Numerical Weather
Prediction (NWP) model that are related to precipitation and
temperature in the basins of interest

— Geo-potential height, wind, and humidity at five pressure levels
— Various surface flux variables
— Computed variables such as vorticity advection, stabilitiy indices, etc.

— Variables lagged to account for temporal phase errors in atmospheric
forecasts.

Use NWP outputs in a statistical model to estimate precipitation
and temperature for the basins

— Multiple linear regression

— Local polynomial regression

— K-nn

— Canonical Correlation Analysis

— Artificial Neural Networks

— NWS bias-correction methodology

— e did ,



Multiple linear regression approach

Multiple linear Regression with forward selection
Y=a,+aX1+a,X2+a,X3...+aXn+e

Use cross-validation procedures for variable selection — typically less
than 8 variables are selected for a given equation

Stochastic modeling of the residuals in the regression equation to provide
ensemble time series

A separate equation is developed for each station, each forecast lead
time, and each month.

Regression coefficients estimated for the period of the NWP hindcast
(1979-2001) and applied to the CDC experimental forecasts in real-time

Local-scale precipitation and temperature forecasts are used as inpu
the CBRFC hydrologic modeling system to provide real-timefié sfs o




Results for example basins
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Ongoing work

Implement logistic regression to predict the probability of
precipitation occurrence (done)

Cross-validated MLR results (runs are in progress)

Comparisons with downscaling to station data (runs are
also in progress)

Estimates of necessary sample size to develop stable
regression equations

Use of pooled regression to increase sample size and
preserve spatial co-variability (evaluate possible trade-
offs between accuracy at individual stations and the
consistency of the spatial fields)

Implementation of other statistical techniques (K-nn,

CCA, ANN, NWS bias correction, etc.)



Impact

0 Partnerships with NWS Office of Hydrologic
Development and CBRFC to develop state-of-
the-art techniques for hydrologic forecasting
(through well-documented scientific
comparisons)

0 Implement these techniques in NWS operations.

— e did M



	Experimental streamflow forecastsfor Spring 2003
	OUTLINE
	MRF FORECAST ARCHIVE
	DOWNSCALING OF THENCEP MRF OUTPUT
	DOWNSCALING OF THENCEP MRF OUTPUT
	DOWNSCALING OF THENCEP MRF OUTPUT
	SKILL OF MINIMUM TEMPERATURE PREDICTIONS
	BASINS
	Hydrologic Model
	Ranked Probability ScoreMeasure of probabilistic forecast skill
	Methods for experimental forecasts
	Downscaling approach
	Multiple linear regression approach
	Results for example basins
	Ongoing work
	Impact

